http://www.livescience.com/technology/destroy_earth_mp.htmlDestroying the Earth is harder than you may have been led to believe.
You've seen the action movies where the bad guy threatens to destroy the Earth. You've heard people on the news claiming that the next nuclear war or cutting down rainforests or persisting in releasing hideous quantities of pollution into the atmosphere threatens to end the world.
Fools.
The Earth was built to last. It is a 4,550,000,000-year-old, 5,973,600,000,000,000,000,000-tonne ball of iron. It has taken more devastating asteroid hits in its lifetime than you've had hot dinners, and lo, it still orbits merrily.
So my first piece of advice to you, dear would-be Earth-destroyer, is: do not think this will be easy.
Mission statementBy any means necessary, to render the Earth into a form in which it may no longer be considered a planet. Such forms include, but are most definitely not limited to: two or more planets; any number of smaller asteroids; a quantum singularity; a dust cloud.
To make the list, a method must actually work. That is, according to current scientific understanding, it must be possible for the Earth to actually be destroyed by this method, however improbable or impractical it may be.
Methods are ranked in order of feasibility, with the least likely listed first and the most likely being No. 10.
Current Earth-destruction StatusNumber of times the Earth has been destroyed: 0
Number of plans currently in progress with the final aim of bringing about the Earth's destruction: 0
Number of scientific experiments currently underway with the potential to bring about the Earth's destruction: 0
Minimum amount of time until the Earth is destroyed by natural means (discounting total existence failure): 25 years
Minimum amount of time until the Earth is destroyed by artificial means: 50 years
What this guide is notThis is not a guide for those whose aim is merely to wipe out humanity. I can in no way guarantee the complete extinction of the human race via any of these methods, real or imaginary. Humanity is wily and resourceful, and many of the methods outlined inside will take many years to even become available, let alone implement, by which time mankind may well have spread to other planets; indeed, other star systems.
If total human genocide is your ultimate goal, you are reading the wrong document. There are far more efficient ways of doing this, many which are available and feasible right now. Nor is this a guide for those wanting to annihilate everything from single-celled life upwards, render Earth uninhabitable or simply conquer it. These are trivial goals in comparison.
This is a guide for those who do not want the Earth to be there anymore.
***
10 - Total existence failure - Current feasibility rating: 0/10
You will need: nothing
Method: No method. Simply sit back and twiddle your thumbs as, completely by chance, all 200,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 atoms making up the planet Earth suddenly, simultaneously and spontaneously cease to exist. Note: the odds against this actually ever occurring are considerably greater than a googolplex to one. Failing this, some kind of arcane (read: scientifically laughable) probability-manipulation device may be employed.
Utter, utter rubbish.
9 -Gobbled up by strangelets - Feasibility rating: 1/10
You will need: a stable strangelet
Method: Hijack control of the Relativistic Heavy Ion Collider in Brookhaven National Laboratory, Long Island, New York. Use the RHIC to create and maintain a stable strangelet. Keep it stable for as long as it takes to absorb the entire Earth into a mass of strange quarks. Keeping the strangelet stable is incredibly difficult once it has absorbed the stabilizing machinery, but creative solutions may be possible.
A while back, there was some media hoo-hah about the possibility of this actually happening at the RHIC, but in actuality the chances of a stable strangelet forming are pretty much zero.
Earth's final resting place: a huge glob of strange matter.
8 - Sucked into a microscopic black hole - Feasibility rating: 2/10
You will need: a microscopic black hole. Note that black holes are not eternal, they evaporate due to Hawking radiation. For your average black hole this takes an unimaginable amount of time, but for really small ones it could happen almost instantaneously, as evaporation time is dependent on mass. Therefore you microscopic black hole must have greater than a certain threshold mass, roughly equal to the mass of Mount Everest. Creating a microscopic black hole is tricky, since one needs a reasonable amount of neutronium, but may possibly be achievable by jamming large numbers of atomic nuclei together until they stick. This is left as an exercise to the reader.
Method: simply place your black hole on the surface of the Earth and wait. Black holes are of such high density that they pass through ordinary matter like a stone through the air. The black hole will plummet through the ground, eating its way to the center of the Earth and all the way through to the other side: then, it'll oscillate back, over and over like a matter-absorbing pendulum. Eventually it will come to rest at the core, having absorbed enough matter to slow it down. Then you just need to wait, while it sits and consumes matter until the whole Earth is gone.
Highly, highly unlikely. But not impossible.
Earth's final resting place: a singularity of almost zero size, which will then proceed to happily orbit the Sun as normal.
7 - Blown up by matter/antimatter reaction - Feasibility rating: 5/10
You will need: 2,500,000,000,000 tons of antimatter
Antimatter - the most explosive substance possible - can be manufactured in small quantities using any large particle accelerator, but this will take some considerable time to produce the required amounts. If you can create the appropriate machinery, it may be possible - and much easier - simply to "flip" 2.5 trillion tons of matter through a fourth dimension, turning it all to antimatter at once.
Method: This method involves detonating a bomb so big that it blasts the Earth to pieces.
How hard is that?
The gravitational binding energy of a planet of mass M and radius R is - if you do the lengthy calculations - given by the formula E=(3/5)GM^2/R. For Earth, that works out to roughly 224,000,000,000,000,000,000,000,000,000,000 Joules. The Sun takes nearly a WEEK to output that much energy. Think about THAT.
To liberate that much energy requires the complete annihilation of around 2,500,000,000,000 tonnes of antimatter. That's assuming zero energy loss to heat and radiation, which is unlikely to be the case in reality: You'll probably need to up the dose by at least a factor of ten. Once you've generated your antimatter, probably in space, just launch it en masse towards Earth. The resulting release of energy (obeying Einstein's famous mass-energy equation, E=mc^2) should be sufficient to split the Earth into a thousand pieces.
Earth's final resting place: A second asteroid belt around the Sun.
Earliest feasible completion date: AD 2500. Of course, if it does prove possible to manufacture antimatter in the sufficiently large quantities you require - which is not necessarily the case - then smaller antimatter bombs will be around long before then.